51 research outputs found

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Auditory-inspired morphological processing of speech spectrograms: applications in automatic speech recognition and speech enhancement

    Get PDF
    New auditory-inspired speech processing methods are presented in this paper, combining spectral subtraction and two-dimensional non-linear filtering techniques originally conceived for image processing purposes. In particular, mathematical morphology operations, like erosion and dilation, are applied to noisy speech spectrograms using specifically designed structuring elements inspired in the masking properties of the human auditory system. This is effectively complemented with a pre-processing stage including the conventional spectral subtraction procedure and auditory filterbanks. These methods were tested in both speech enhancement and automatic speech recognition tasks. For the first, time-frequency anisotropic structuring elements over grey-scale spectrograms were found to provide a better perceptual quality than isotropic ones, revealing themselves as more appropriate—under a number of perceptual quality estimation measures and several signal-to-noise ratios on the Aurora database—for retaining the structure of speech while removing background noise. For the second, the combination of Spectral Subtraction and auditory-inspired Morphological Filtering was found to improve recognition rates in a noise-contaminated version of the Isolet database.This work has been partially supported by the Spanish Ministry of Science and Innovation CICYT Project No. TEC2008-06382/TEC.Publicad

    Illusory Percepts from Auditory Adaptation

    Get PDF
    Phenomena resembling tinnitus and Zwicker phantom tone are seen to result from an auditory gain adaptation mechanism that attempts to make full use of a fixed-capacity channel. In the case of tinnitus, the gain adaptation enhances internal noise of a frequency band otherwise silent due to damage. This generates a percept of a phantom sound as a consequence of hearing loss. In the case of Zwicker tone, a frequency band is temporarily silent during the presentation of a notched broad-band sound, resulting in a percept of a tone at the notched frequency. The model suggests a link between tinnitus and the Zwicker tone percept, in that it predicts different results for normal and tinnitus subjects due to a loss of instantaneous nonlinear compression. Listening experiments on 44 subjects show that tinnitus subjects (11 of 44) are significantly more likely to hear the Zwicker tone. This psychoacoustic experiment establishes the first empirical link between the Zwicker tone percept and tinnitus. Together with the modeling results, this supports the hypothesis that the phantom percept is a consequence of a central adaptation mechanism confronted with a degraded sensory apparatus

    Short and Intense Tailor-Made Notched Music Training against Tinnitus: The Tinnitus Frequency Matters

    Get PDF
    Tinnitus is one of the most common diseases in industrialized countries. Here, we developed and evaluated a short-term (5 subsequent days) and intensive (6 hours/day) tailor-made notched music training (TMNMT) for patients suffering from chronic, tonal tinnitus. We evaluated (i) the TMNMT efficacy in terms of behavioral and magnetoencephalographic outcome measures for two matched patient groups with either low (≤8 kHz, N = 10) or high (>8 kHz, N = 10) tinnitus frequencies, and the (ii) persistency of the TMNMT effects over the course of a four weeks post-training phase. The results indicated that the short-term intensive TMNMT took effect in patients with tinnitus frequencies ≤8 kHz: subjective tinnitus loudness, tinnitus-related distress, and tinnitus-related auditory cortex evoked activity were significantly reduced after TMNMT completion. However, in the patients with tinnitus frequencies >8 kHz, significant changes were not observed. Interpreted in their entirety, the results also indicated that the induced changes in auditory cortex evoked neuronal activity and tinnitus loudness were not persistent, encouraging the application of the TMNMT as a longer-term training. The findings are essential in guiding the intended transfer of this neuro-scientific treatment approach into routine clinical practice

    Assessment of thrombin-activatable fibrinolysis inhibitor (TAFI) activation in acquired hemostatic dysfunction: a diagnostic challenge

    Get PDF
    • …
    corecore